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Summary

NASA Lewis is currently engaged in a research effort as a team member of the High Al-

pha Technology Program (HATP) within NASA. This program utilizes a specially equipped

F/A-18, the High Alpha Research Vehicle (HARV), in an ambitious effort to improve the

maneuverability of high-performance military aircraft at low- subsonic-speed, high angle-

of-attack conditions. The overall objective of the Lewis effort is to develop inlet technology

that will ensure efficient airflow delivery to the engine during these maneuvers. One part

of the Lewis approach utilizes computational fluid dynamics codes to predict the installed

performance of inlets for these highly maneuverable aircraft.

Full Navier-Stokes (FNS) calculations on the installed F/A-18 inlet at 30 degrees angle

of attack, 0 degrees yaw and a freestream Mach number of 0.2 have been obtained in this

study using an algebraic turbulence model with two grids (original and revised). Results

obtained with the original grid were used to determine where further grid refinements and

additional geometry were needed. In order to account properly for the external effects,

the forebody, Leading Edge Extension (LEX), ramp, and wing were included with inlet

geometry. In the original grid, the diverter, LEX slot and leading edge flap were not

included due to insufficient geometry definition. These were included in a revised grid and

the results obtained with both configurations are presented in this report. In addition,

a thin-layer Navier-Stokes (TLNS) code is used with the revised grid and the numerical

results are compared to those obtained with the FNS code. The TLNS code was used

to evaluate the effects on the solution using a code with more recent CFD developments

included such as upwinding with TVD schemes versus central differencing with artificial

dissipation. The calculations are compared to a limited amount of available experimental

data. The predicted forebody/fuselage surface static pressures compared well with data for

all solutions. The predicted trajectory of the vortex generated under the LEX was different

for each solution. These discrepancies are attributed to differences in the grid resolution

and turbulence modelling. All solutions predict that this vortex is ingested by the inlet.

The predicted inlet total pressure recoveries are lower than data and the distortions are

higher than data. The results obtained with the revised grid were significantly improved

from the original grid results. The original grid results indicated the ingested vortex

migrated to the engine face and caused additional distortions to those already present due
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to secondaryflow development. The revisedgrid results indicate that the ingestedvortex

is dissipated along the inlet duct inboard wall. The TLNS results indicate the flow at the

engine face wasmuch more distorted than the FNS results and is attributed to the pole

boundary condition introducing numerical distortions into the flow field.
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1.0 Introduction

NASA Lewis is currently engagedin a research effort as a team member of the High Al-

pha Technology Program (HATP) within NASA. This program utilizes a specially equipped

F/A-18, the High Alpha Research Vehicle (HARV), in an ambitious effort to improve the

maneuverability of high-performance military aircraft at low-subsonic-speed, high angle-

of-attack conditions. The overall objective of the Lewis effort is to develop inlet technology

that will ensure efficient airflow delivery to the engine during these maneuvers. One part

of the Lewis approach utilizes computational fluid dynamics codes to predict the installed

performance of inlets for these highly maneuverable aircraft.

One of the goals of the NASA high alpha technology program is to accurately pre-

dict the aerodynamics of aircraft operating at extreme attitudes (alpha=60 deg, beta=

10 deg). As part of this program, NASA Ames-Dryden, Ames-Moffett and Langley are

concentrating on external aerodynamics including thrust vectoring control systems and

vortex flow control. NASA Lewis is studying the effects of high angle-of-attack and yaw

flight conditions on flow within the F/A-18 inlet duct. Details of this cooperative program

are contained in Ref. 1. The effects of rate of change in the angle of attack and yaw will

be considered for the flight tests only.

The F/A-18 aircraft has experienced engine stalls at high angles of attack and yaw

flight conditions which were outside of the flight envelope. At these flight conditions, high

angular rates were also present. Future fighter aircraft will be designed to operate routinely

in this flight regime. Therefore, it is essential that an understanding of the inlet flow field

at these flight conditions be obtained. Due to the complex interactions of the fuselage

flow field and the inlet flow field, a study of the flow within the inlet must also include the

external effects. Past calculations of flow about the F/A-18 have not included the inlet and

ramp [Ref. 2,3]. These features are usually fared over and assumed not to influence the

external flow field significantly. However, the effects from the upstream forebody, Leading

Edge Extension (LEX) and diverter must be included in order to provide the proper inflow

conditions to the inlet duct.

The results of including the inlet and ramp in the flow simulation are reported in Ref.

4. The results of this prior effort formed the foundation for the work that is reported in this

report. The solutions obtained in this previous study were evaluated and several short-



comings were identified. This resulted in obtaining a much more detailed and complete

geometry data base of the F/A-18 aircraft and inlet. In addition several areas of the

computational grid wererevisedto improve flow field and surfaceresolution. Also, the total

number of grid points used to model additional componentsin the revised grid increased

only approximately 10%. This was accomplished by reducing the number of grid points in

regions where the flow field did not appear to have a significant impact on the inlet flow

conditions.

Full Navier-Stokes calculations on the installed F/A-18 inlet at 30 degrees angle of

attack, 0 degrees yaw and a freestream Mach number of 0.2 have been obtained in this

study using the PARC3D code [Ref. 5] with an algebraic turbulence model. In order to

account properly for the external effects, the forebody, LEX, ramp, and wing were included

with inlet geometry as shown in Figure la. In the original study, the diverter, LEX slot

and leading edge flap were not included due to insufficient geometry definition. These were

included in the revised geometry as shown in Figure lb and the results obtained with both

configurations are presented in this report. Results obtained with the original grid were

used to determine where further grid refinements and additional geometry were needed.

The calculations are compared to data that presently exist (Ref. 6,7). In particular, data

for the inlet flow field is very limited. These results will be more fully compared with

data obtained from a 19.78% scale forebody/inlet model of the F/A-18 aircraft which is

scheduled to be tested in 1995 at NASA Lewis and also with flight test data from the

HARV in 1994. The purpose of these comparisons is to evaluate/validate the codes. The

codes will also be used to aid in the interpretation of the experimental results. One of the

objectives of the CFD effort is to aid in the interpretation of the experimental results. The

numerical simulations can provide information concerning regions of the flow field that are

not measured.

In addition, a comparison of the PARC3D results was made with those obtained using

another code. The code chosen was CFL3D [Ref. 8] which has been used extensively for

external flow calculations at NASA Langley. The TLNS code was used to evaluate the

effects on the solution using a code with more recent CFD developments included such as

upwinding with TVD schemes versus central differencing with artificial dissipation. A few

modifications were made to the code to accommodate the required internal flow boundary
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conditions and grid topologies. Also, a modified versionof the revised grid was used. The

major differences in grid topologies were the deletion of the embedded C-grid around the

inlet highlight and the flap because the version of CFL3D used could not accommodate

these overlaid grids.

In addition to comparing the CFL3D and PARC3D solutions, some of the strengths

and weaknesses of the two codes could be compared when they are applied to a complicated

configuration such as the F/A-18 forebody/inlet geometry. However, this is not considered

to be an exhaustive comparison of the two codes.

This report is divided into several sections. A brief description of the proposed flight

and model test programs is presented. This is followed by a discussion of the numerical

modelling of this problem which includes a brief description of the flow analysis codes

used, the grid generation process and the boundary conditions posed. A comparison of the

numerical results obtained for the external flow field features are presented along with a

comparison of the predicted and measured surface static pressures along the forebody and

LEX. The numerical results for the inlet flow field are then presented along with a com-

parison to experimental total pressure contours and performance data. A short discussion

of various numerical issues raised during this study is presented. Major conclusions and

recommendations conclude the report.



2.0 Experimental Program

An experimental program to study the inlet duct flow is planned at Lewis. A 19.78%

scale forebody/inlet model of the F/A-18 aircraft is scheduled to be tested in the Lewis

9x15 wind tunnel. Details of the airframe aft of the engine face plane will not be included.

Measurements are planned to include steady and dynamic total pressure surveys at various

stations within the inlet, including a 40 probe total pressure rake at the engine face, a flow

angle survey at the inlet throat and engine face, surface static pressure measurements along

the forebody and inlet walls and laser light sheet flow visualization of the flow ahead of

the inlet. The effects of mass flow rate, angle of attack and yaw will be investigated.

In addition to the model scale test program, a flight test program is also planned

to be conducted at the NASA Dryden Flight Research Center using a specially equipped

F/A-18 called the High Alpha Research Vehicle (HARV). This program will provide inlet

duct data such as surface static pressures and a compressor face total pressure distribution.

This full scale data will be compared with CFD predictions to be obtained at Lewis.



3.0 Numerical Modelling

In this section the major features of the PARC3D and CFL3D codes are presented

along with a discussion of the boundary conditions used with each code. A detailed

discussion of the development of the computational grid is presented.

3.1 PAR.C3D Code

The PARC3D code [Ref 5] solves the full three-dimensional Reynolds averaged Navier-

Stokes equations in strong conservation form using the Beam and Warming approximate

factorization scheme to obtain a block tridiagonal system of equations. Pulliam's scalar

pentadiagonal transformation provides for an efficient solver. The code uses the Baldwin-

Lomax turbulence model [Ref. 9]. Specifically, the NASA Lewis version of this turbulence

model does not use the streamwise component of vorticity in the determination of the

turbulent viscosity [Ref. 10]. This approach was found to improve the modelling of vortical

flows in ducts. The implicit scheme uses central differencing with artificial dissipation to

eliminate oscillations in the solution associated with the use of central differences. This

code allows for the use of multiple grid blocks. Trilinear interpolation [Ref. 11] is used to

transfer information at the grid block interfaces.

3.2 CFL3D Code

The CFL3D code [Ref. 8] solves the thin-layer Navier-Stokes equations. It employs

the Baldwin-Lomax [Ref. 9] turbulence model. The equations are solved using upwind

differencing with a total variation diminishing (TVD) scheme. The TVD scheme eliminates

oscillations due to dispersion errors introduced by the higher order terms in the upwind

differences by shutting off these higher order terms in regions of large flow oscillations.

Various options are available in the code for TVD schemes, flux-vector differencing, and

upwinding accuracy. The options chosen were the Roe flux difference splitting scheme,

third order accurate upwinding, and the smooth flux limiter which is tuned for the third

order accurate upwinding scheme. The three-factor approximate factorization scheme is

used to obtain a block tridiagonal system of equations. For the Roe scheme, the equations

are diagonalized to obtain a scalar tridiagonal system of equations. This diagonalization

provides for a more efficient solver. A semi-conservative scheme is employed to transfer

information between grid blocks [Ref. 12]. Multigridding is also available which may

accelerate the convergence of the solution [Ref. 13].
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However the multi-gridding option could not be implemented for this problem. This

was due to the fact that the grid block boundary interfaces require very close match

of adjacent grid block edge boundaries which could not be maintained along complex

interfaces as the grids were coarsened during the multigrid cycle. The use of multigridding

has the potential to reduce the required computational time by up to a factor of three.

3.3 Grid Generation

Accurate modeling of the geometry and judicious clustering of grid points is needed

for a correct numerical solution and an economical computation. The complex multi-block

grid used for these calculations was created with the GRIDGEN grid generation system

[Ref. 14]. This grid generator has proven to be very effective in creating complex multi-

block grids.

The geometry database used to create the grid for this study was obtained from

McDonnell-Douglas. The database consisted of x,y,z coordinate points given at axial cuts

along the fuselage. The database included the definition of the fuselage, LEX, wing, tail,

ramp and the inlet. The original grid based on the initial database did not include or have

sufficient definition of the diverter, the LEX slot, and the inlet highlight. The deficiencies

in the geometry database used for this grid have been corrected and a revised grid, created

with the more accurate database, was generated.

Due to the complex interactions between the fuselage flow field and the inlet flow field,

the forebody, fuselage, LEX, ramp and wing were all included in the grid. The horizontal

tail, vertical tail, aft fuselage and the nozzle were not modeled because of their minimal

effects on the inlet flow field. The wing leading edge flap, which is deflected down 34 degrees

when the aircraft is at 30 degrees angle of attack and greater, was modeled undeflected in

the original grid. The deflected flap was included in the revised grid. An embedded C-grld

about the inlet highlight is also included in the revised grid to improve the resolution of

flow gradients and surface geometry. A pair of counter rotating vortex generators which

are positioned approximately halfway downstream from the inlet entrance in the inlet duct

were not modelled due to their small size, which would require an exorbitant number of

grid points to resolve. Due to the CFL3D code not allowing for over-lapping grids, the inlet

highlight c-grid and the wing lending edge flap were removed from the revised PARC3D

grid for generating the CFL3D grid.



The CFL3D code stores all data in core memory which requires significantly more

spacethan PARC3D which keepsonly the data for the block being analyzed in coremem-

ory. The rest of the block data is stored on disk memory, therefore the total number of

grid points usedfor the CFL3D grid was less than the revised PARC3D grid due to core

memory limitations.

The databasewas modified in selectedareas,as discussedbelow, using the program

I3G/VIRGO (Interactive Graphics for Geometry Generation, Ref.15). This program was

developedat the Wright Researchand Development Center, and it runs interactively on

the IRIS workstation. It is mainly used for geometry databasemanipulation, such as

rotations, translations, and scaling. In addition, it is used to reformat databasesto the

one compatible with the GRIDGEN system. It can also be used to join together, or split

apart surfacedefinitions. For instance, the top of the LEX was split from the bottom of

the LEX in order to generatea viscous grid under the LEX and an inviscid grid above

the LEX. I3G/VIRGO is alsouseful for geometrygeneration using lines, elliptic arcs,and

curves. These features were used to enhancecertain areas of the database such as the

ramp and the wing root, which werenot definedwell in the initial database. In addition,

the I3G/VIRGO features were used to create the definition of the external cowling for

the original grid. Finally, the databasewasscaledto match the 19.78% scale wind tunnel

forebody/inlet model which will be tested at NASA Lewis 9x15 wind tunnel.

The first program in the GRIDGEN grid generation system is GRIDBLOCK. This

is an interactive program which runs on the Iris workstation. This program was used

to create the blocking structure of the grid. The blocking structure was affected most

significantly by the degree of complexity of the surface geometry. The blocking structure

was also affected by the flow solver boundary condition requirements and block interface

requirements. Another factor in determining the blocking structure was the maximum

number of grid points per block allowed by computer memory limitations.

The blocking structure used for the F/A-18 consists mainly of C-grids wrapped around

the fuselage, in the cross-flow plane. The original F/A-18 blocking structure can be seen in

Figure 2a. The revised F/A-18 blocking structure is shown in Figure 2b. The inlet block

is an O-grid extending from the inlet lip to the compressor face. The blocks were created

such that the blocks under the LEX contained grids for viscous flows, while the blocks over
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the LEX were sparser for inviscid flow analysis. This was done because it was felt that

the viscous effects above the LEX did not significantly effect the flow into the inlet. This

also decreased the required number of grid points and thus the run times. Blocks were

extended approximately one body length away from the surface in order to minimize the

effects of the free stream boundary condition on the solution near the inlet.

Once the blocking structure was completed, the second GRIDGEN program, GRID-

GEN2D, was used to create the grid on the six block faces. This program, like GRID-

BLOCK, runs interactively on the Iris. GRIDGEN2D contains a variety of stretching

functions for point distribution on face edges. The stretching function which was used in

the majority of cases for this grid was the one based on Vinokour's functions (Ref !6).

The viscous grids were packed so that spacing at the wall was .0002". This produced a

Y+ of around 1. After the edges on a face are defined the points on the interior of the face

are defined. An algebraic solver using transfinite interpolation with arc based interpolants

was used to initialize the grid for most faces. If the resulting grid needed smoothing or

orthogonality along an edge, the elliptic solver was used. The Thomas and Middlecoff

method (Ref 17) along with Sorenson's method (Ref 18) proved to be the most effective.

The third GRIDGEN program, GRIDGEN3D, is a batch code that runs on a Cray

computer. It creates the grid in the interior of each block. Most of the blocks only required

the algebraic solver to initialize the interior points. However, some blocks with excessive

skewness required the elliptic solver to smooth the grid. GRIDGEN3D also creates a

partial PARC3D input file based on the boundary conditions specified in GRIDBLOCK.

The original grid contained approximately 1.1 million grid points and the revised grid

contained approximately 1.2 million points.

The grid on the symmetry plane and on the F-18 surface can be seen in Figure 3a for

the original grid and for the revised grid is shown in Figure 3b. A close-up view of the

grid along the airframe surface is shown in Figure 4a for the original grid and the revised

grid is shown in Figure 4b.

One of the main problems with creating a multi-block grid is maintaining correct

interfaces were two blocks meet. Many multiblock CFD codes, such as CFL3D, require

that all the face points of an interface must lie along the boundaries of the adjoining block.

This requirement is impossible to meet with non-contiguous interfaces with curved edges
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using a linear interpolation scheme. This is most difficult when a grid is packed very

closely, for a viscous wall boundary condition, at one of these edges. The only solution is

to carefully distribute the finer grid points along the curved edge such that each point on

the edge lies entirely along the other coarser grid block's boundary, in terms of the linear

interpolation scheme used to capture all the points. For overlapping grid boundaries, as

required by PARC3D, it may be difficult to contain the extended grid boundaries outside

of solid surfaces at complex geometric boundaries.

3.4 Boundary Conditions

3.4.1 PARC3D Code

The farfield type boundary conditions were imposed along the outer computational

boundaries. This type of condition uses a one-dimensional Riemarm invariant to maintain

the free-stream flow conditions. Along the windward side of the airframe, no-slip, adiabatic

conditions are specified. Along the leeward side of the aircraft, inviscid flow is specified.

The static pressure at the engine face was adjusted to obtain the equivalent experimental

corrected mass flow rate based upon total pressure at the _ngine face plane obtained from

an average of 40 total pressures in a configuration of 8 equally spaced legs with 5 equal area

total pressure locations per leg. Symmetry conditions were assumed along the centerline

of the aircraft. Trilinear interpolation is used to transfer data between the grid blocks.

3.4.2 CFL3D Code

The boundary conditions used by CFL3D were similar to the PARC3D conditions with

a few exceptions. The CFL3D code does not have a turbulence model with generalized

wall boundary conditions which allow the use of opposing walls within a single grid block.

Therefore, the flow in the diverter, LEX slot and upper divertor was treated as laminar.

The effects on the predicted flow field of using the laminar flow assumption are discussed

in this report. Also, since the grid block interface boundary conditions are for a full block

surface, the slot exit was modelled as a subsonic exit pressure boundary instead of an

interface to the top side of the LEX since the slot interface made up only a portion of the

adjoining block's surface. The exit static pressure was set based upon the average static

pressure calculated by the PARC3D code which used an interface boundary condition. In

order to model the slot interface with the CFL3D code, the use of several grid blocks on



the top side of the LEX would be required to isolate the slot interface along a complete

grid block surface.
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4.0 Results

In this section, the results using the original and revised grids with PARC3D and the

CFL3D solution are presented. The external flow results are presented first and followed

by a discussion of the inlet duct flow field predictions. The results are compared with

available data.

4.1 External Flow Field

In this section, the external flow features common to all three solutions will be dis-

cussed first. Following this, the differences in the three external flow results will be pre-

sented. The graphical results presented in this section were obtained using the PLOT3D

program [Ref. 19].

At 30 degrees angle of attack, a vortex is formed underneath the LEX as can be

seen in Figure 5. The predicted particle traces (simulated oil flows) along the forebody

and along the fuselage below the LEX are shown in Figure 6. The windward vortex is

generated when the flow impinges on the bottom of the LEX and moves down the fuselage

until it reaches a separation line. The PARC3D solution using the revised grid indicates

that the under LEX vortex has moved downward along the fuselage as compared to the

flow pattern shown for the original grid. The discontinuity in the particle traces shown in

the original grid is due to the use of two blocks, instead of one as in the revised grid. The

PLOT3D code will not allow particles to pass between two grid blocks when the particles

are restricted to a surface, unless the two surfaces are coincident. The increased curvature

in the particle traces using the revised grid may be due to the presence of the slot through

which flow is passing which causes an upward movement of the traces near the entrance

to the diverter region. In addition, the presence of the flow splitting "wedge" may be

providing blockage to the flow.

The particle traces obtained using the CFL3D solution with the revised grid are

somewhat different than the particle traces predicted by PARC3D using the revised grid.

These discrepancies between the PARC3D and CFL3D results may be due to the fact that

the revised grid used for the CFL3D calculations along the lower LEX region of the fuselage

had approximately half the number of strearnwise points as the revised PARC3D grid due

to the core memory storage limitations of CFL3D. In addition, the version of the Baldwin-

Lomax turbulence model used in the PARC3D solutions included only the component of
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vorticity which is normal to the streamwise direction in the determination of the turbulent

viscosity whereas the CFL3D code uses the total vorticity. This difference can affect the

position of the vortex as discussed in Ref. 10. Another possible source of the discrepancies

could be due to the different algorithms used. The PARC3D code uses central differencing

with artificial dissipation while the CFL3D code using a third order upwinded differencing

with a TVD scheme. The amounts of numerical dissipation introduced into the solution

by these two schemes could be quite different.

Another effect on the vortex trajectory may be due to the modelling of the flow behind

the ramp as is shown in the close-up view of the particle trajectories slightly ahead of the

ramp in Figure 7. A comparison to the PARC3D results with the original and revised grids

shows that the inclusion of the diverter and slot in the revised grid causes the flow to move

slightly upstream from the ramp and upwards through the slot. The flow behind the ramp

in the original grid was modelled inviscidly, without a slot or diverter, which resulted in

the flow moving parallel to the axial direction. The CFL3D results show the flow moving

farther upstream than the PARC3D results using the revised grid. This discrepancy in the

two solutions may be attributed to the use of the laminar flow approximation in the CFL3D

solution in the diverter/slot grid blocks. The laminar flow tends to have larger regions of

cross-flow separation than the turbulent case, and may affect the flow directionality. Since

the CFL3D code turbulence model does not allow the use of opposing walls within a single

grid block, the use of several more grid blocks would have been necessary to model the

diverter/LEX slot regions.

The effects of the improved modelling of the upper diverter (see Fig. lb) on the flow

along the ramp are shown in Figure 8. The particle trajectories obtained for the original

grid indicate that there is a significant region of separated flow along the ramp near the

top of the inlet. This may be due to the lack of adequate geometry resolution of the upper

diverter region in the original grid. This region was modelled as an inclined fiat plate

due to this lack of definition in the original data base. In the revised grid, this region is

accurately defined in the data base and much more aerodynamically contoured to allow

flow to move over the top of the inlet and results in small amounts of upstream movement

of the ramp particle traces in the revised grid results. The CFL3D results indicate that

the flow has a saddle point upstream, although the particle trajectories appear to enter
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the inlet at a location similar to that in the revised PARC3D results. This saddle point

may be due to modelling the cove as a laminar flow region which has a different cross-

stream separation pattern than the turbulent case in PARC3D. This region was modelled

as laminar due to the presence of opposing wall in a single grid block which cannot be

handled by the present turbulence model.

Surface static pressure measurements from a flight test were made at several fuselage

locations as shown in Figure 9. A previous computational study for fully turbulent flow

[Ref. 4] indicated that the effects of 19.78% scale were negligible for this type of data

and therefore full scale data could be compared with these subscale results. The numer-

ical results for the surface static pressures along the forebody and LEX are all in good

agreement with the data [Ref. 6], as shown in Figure 10, despite differences in the vortex

location. The CFL3D results appear to have the closest agreement with the data, although

the other solutions are almost as close. The discrepancies between the numerical results

and the data along the forebody may be due to the lack of adequate grid resolution of the

vortex dominated region of the flow. Along the top side of the LEX the agreement is poor

due to lack of grid resolution and the use of the inviscid flow approximation in this region.

Another source for the discrepancies may be due to laminar to turbulent transitioning flow

which is present on the full scale vehicle [Re£ 6]. These calculations assume fully turbulent

flow present everywhere.

4.2 Inlet Duct Flow Field

In this section, several aspects of the inlet duct flow field are examined. Comparisons

of the predicted surface static pressure distributions about the inlet highlight are first

presented. This is followed by a discussion of the predicted total pressure contours at

the inlet entrance and engine face. The predicted engine face total pressures contours are

compared with experimental total pressure contours. The predicted inlet performance is

also compared with data. The vorticity contours depicting the secondary flow field and

vortices present in the three solutions are then presented for the duct entrance and engine

face stations.

The surface static pressure distributions about the inlet highlight obtained from the

three solutions are shown in Figure 11. As can be seen the distribution obtained using

the embedded c-grid is much improved over the original solution. It should be noted
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that the pressuredistribution obtained with the original grid without the c-grid doesnot

adequately resolve the supersonic acceleration about the highlight and there is a significant

total pressure overshoot (10% greater than freestream), .........

The CFL3D pressure distributions compare much closer with those obtained by

PARC3D using an embedded c-grid about the inlet highlight than the original grid re-

sults. The poor pressure distributions obtained with PARC3D without a c-grid about the

leading edge highlight may be due to the presence of a discontinuity, in the grid distribu-

tion in the axial direction, at the inlet entrance grid block interface which extends into the

upstream flow field. Due to the complex geometry, manually extending the grid interface

to maintain continuous metrics is difficult. Also, the number of grid points in the region of

the highlight for the original grid is approximately one-half the number used in the CFL3D

grid.

For the CFL3D code, the grid block surfaces do not have to be overlapped. The CFL3D

code uses an approach that is similar to the PARC3D in regards to transferring informa-

tion between grid blocks. Essentially, CFL3D creates two layers of ghost cells within the

adjacent block and assumes that the grid spacing normal to the interface boundary is ap-

proximately the same on both sides of the boundary. If the normal spacing is not the same,

errors similar to those discussed for the overlapping boundary used for PARC3D will be

encountered. These ghost cells are used to interpolate data from the adjacent grid block.

For PARC3D, at least one additional overlapping surface must be generated in order to

interpolate data from the adjoining grid block. With PARC3D, interpolation coefficients

for all three directions are determined by the location of the interface surface. Whereas,

CFL3D assumes the grid spacing normal to the block interface is the same on each side

of the block interface and only determines the interpolation coefficients in the tangential

directions to the interface surface using the actual coordinates of the grid points defining

the block interface surface.

The predicted total pressure contours at the inlet entrance obtained for each solution

are shown in Figure 12. The boundary layers are significantly thinner for the revised grid

results as compared to the original grid solution. This improvement is due to the c-grid

providing better resolution of the flow gradients about the lip highlight. These gradients

are severe since the stagnation point is located along the outside of the inlet lip region and
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flow must be turned 180 degrees as it enters the inlet. The total pressure contours obtained

from the CFL3D results indicate a slightly thicker boundary layer than that obtained with

PARC3D using the embedded c-grid. However, the losses associated with the CFL3D

solution appear to be somewhat lower than the PARC3D results obtained without the

c-grid. A region of cross-flow separation is shown in the revised grid and CFL3D grid

solutions. The original grid does not indicate such a region. The improved resolution of

the inlet highlight region appears to be the reason this feature is resolved in the revised

grid and CFL3D grid results.

The predicted total pressure contours at the engine face, shown in Figure 13. The

PARC3D results obtained with the revised grid are much less distorted than those obtained

with the original grid. The major difference is the presence of the embedded c-grid about

the inlet highlight in the revised grid which has a significantly higher grid density in the

highlight region. This c-grid provided much lower losses at the inflow to the inlet and

therefore the losses and distortions are reduced at the outflow station. A comparison of

the predicted inlet performance using both grids with PARC3D to data [Ref. 7] is shown

in Table 1. As can be seen, the results obtained using the revised grid indicate improved

inlet performance over the original grid and much closer agreement to the data than the

original grid results. It should be noted that the mass flow rate for the revised grid was set

at two values: full scale 150 lbm/sec and 144.7 lbm/sec which is the present design flow

rate for this inlet. The reduction in flow rate resulted in an increase in inlet performance.

The PARC3D predicted distortions are less using the revised grid than the CFL3D

predictions. Part of these distortions may be attributed to the lack of a C-grid around the

inlet highlight for the CFL3D calculations. The use of the C-grid improved the PARC3D

calculations significantly. However, even without the C-grid about the highlight, the total

pressure contours near the inlet entrance predicted with CFL3D indicated only a slightly

thicker boundary layer than the PARC3D results obtained with the revised grid. In ad-

dition, the CFL3D surface static pressure distribution about the highlight is much closer

to the C-grid results than the original grid results. The pole boundary condition used in

the CFL3D computations is the most significant source of the distortions at the engine

face. The pole influences the CFL3D solution by distorting the flow field in the vicinity

of the pole. This behavior of the CFL3D pole boundary condition in the presence of flow
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gradients has been observed in computational results concerning the flow in diffusing s-

ducts, the cause of which has not been determined. The effects of the pole in the PARC3D

solution are much less significant. In Table 1, a comparison of the CFL3D predicted inlet

performance to the PARC3D revised grid results shows that the CFL3D predictions have a

lower recovery and significantly higher distortion than the PARC3D results. The PARC3D

performance predictions compare closer to the data.

A comparison of the PARC3D normalized total pressure contours using the revised

grid are compared to data obtained with a 19.2_ scale model for the F-18 aircraft [Ref.

7] in Figure 14. The normalized total pressure represents the percent deviation from the

rake averaged total pressure at the engine face. In Figure 14a, the measured time-averaged

normalized total pressure is shown and the measured normalized total pressure at peak

distortion is shown in Figure 14b. As can be seen, there is a significant difference between

the two experimental results. This indicates a large amount of unsteadiness may be present

in the inlet duct flow field. The PARC3D results appear much more similar to the peak

distortion data than the time-averaged experimental result. It should be noted that the

solutions obtained are converged to an asymptotic, non-time varying condition and not

time accurate therefore, the solutions obtained cannot duplicate the tlme-averaged data

shown or the peak distortion data. In order to attempt to match the time-averaged data,

a time accurate solution is needed with the results at each time step averaged. This issue

also raises the question of unsteady turbulence modelling capability.

The predicted vorticity contours inside the inlet entrance are shown in Figure 15. The

position of the ingested vortex in the original grid results is close to the inboard wall. The

vortex position in the PARC3D and CFL3D solutions using the revised grid is towards the

top center of the inlet entrance. In the case of the original grid the vortex migrates towards

the center of the engine face. For the revised grid cases, the vortex moves towards the

inboard wall and dissipates in the wall boundary layer. This migration into the inboard

wall may be due to the improved upper cowl definition which allows more of the external

flow to move around the cowl instead of into it as shown in Figure 8.

The revised grid solutions using PARC3D and CFL3D indicate a region of cross-

stream separated flow along the lip shown in Figure 12. For the revised grid and CFL3D

grid results this region is located along the outboard wall of the lip and migrates towards
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grid results this region is located along the outboard wall of the lip and migrates towards

the bottom of the duct and mergeswith vortices which have migrated from the inboard

corners of the duct. For the original grid results, this separated region is not present.

This difference is attributed to the increased grid resolution in the revised grid which

utilizes an embeddedC-grid around the inlet highlight. Thesevortices appear to be major

contributors to the developmentof the inlet duct secondaryflow field. This indicates that

the effect of the lip doeshave a significant impact on the developmentof the secondary

flow field in inlets. This migration was exhibited by using the animation capabilities of

the FAST program [Ref. 20]. It should be noted that these vortices contMn very low

energyflow and appear to be a significant contributor to the high levelsof distortion that

have beenpredicted at the engine face. Since data indicates that thesedistortions at the

engine face levels are too high, these vortices may not be real or not as intense and may be

attributed to a lack of adequate inlet highlight resolution. The calculated vorticity contour

plots of the flow field at the engine face are shown in Figure 16. The PARC3D vorticity

plot using the original grid indicates a large vortex along the bottom of the duct which is

due to the development of secondary flow in the duct. A second vortex near the center

of the duct is also present. This vortex is the under LEX vortex that has been ingested.

This vortex accounts for the large migration of low energy flow about the center of the

duct exit shown in Figure 13a. The PARC3D solution using the revised grid indicates a

single vortex at the compressor face due to secondary flow development in the inlet duct.

In the revised grid the LEX vortex is also ingested but migrates into the inboard duct wall

as discussed previously.

The CFL3D vorticity contour plot at the engine face indicates several small vortices

present. The predicted flow field has not reached a numerically converged state with the

number and location of these vortices changing as the solution is iterated. Although the

PARC3D solution exhibited some non-steady state convergence, the general features at

the engine face remained fairly constant with a minimum of changes. The discrepancy in

the CFL3D solution may be attributed to the pole boundary condition which introduces

significant distortions in the vortical shear layer as it moves into the pole region of the

grid. Another possible reason for the lack of steady-state convergence may be that the

CFL3D solution contains less numerical dissipation than the PARC3D solution.
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4.3 Numerical Issues

A comparison of the numerical performance of the two codes, shown n Table 2, indi-

cates that CFL3D is faster but requires significantly more in-core memory than PARC3D.

This is due to the fact that CFL3D stores all of the numerical data in core memory, whereas

PARC3D keeps only the current grid block data in core memory and writes the rest to disk

memory. Although difficult to assess, both codes required approximately the same amount

of computational time to obtain a converged solution. Some differences in CPU time may

be attributed to PARC3D requiring much more I/O than CFL3D since data for only one

grid block is stored in core memory using the PARC3D code. The drop in the residuals for

both codes was similar. The residuals for the viscous blocks dropped approximately three

orders of magnitude while the inviscid blocks dropped up to six orders of magnitude.

The calculations of lift and drag using the revised grid for PARC3D and CFL3D as a

function of iterations indicate the CFL3D solution has less steady state convergence than

the PARC3D solution. The lift and drag coefficients calculated for PAlZC3D were virtually

constant. The CFL3D lift coefficient varied by +/- 3.5% and the drag coefficient varied

by +/- 1.5%. The major source of this lack of convergence is the leeward side of the wing.

A difference in the PARC3D and CFL3D flow field solution convergence was found also

to be the case in the inlet duct flow field calculation. The CFL3D predicted mass flow

rate varied +/- 1% while the PARC3D calculated mass flow rate variation was +/- .4%

as the solution was iterated. The non-convergence of the inlet flow field in the CFL3D

solution may be attributable to the pole boundary condition influencing the flow field in

this region. However, since there is a large disparity between the measured time-averaged

compressor exit total pressure contours and those measured at peak distortion, the inlet

duct flow field may be inherently unsteady and the CFL3D solution is indicating this in

the results. To pursue this issue further, the pole boundary condition problem would have

to be resolved.
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5.0 Conclusionsand Recommendations

The grid generation system,GRIDGEN3D, performedreasonablywell in the develop-

ment of the F/A-18 computational grid. The additional componentsand refined geometry

definition had a significant impact on the numerical results.

The PARC3D forebody/fuselage surface static pressures compared well with the flight

test data and showed an improvement over the original grid results. The inclusion of the

diverter and slot in the revised grid solution had an effect on the path followed by the under

LEX vortex. The forebody/LEX surface static pressures obtained with CFL3D compared

well to the PARC3D results and with data. However, the predicted vortex trajectory

was different. This discrepancy may be due to the fact that the CFL3D solution used

approximately one-half the number of streamwise points than PARC3D and differences in

the turbulence models. Despite these discrepancies in the PARC3D and CFL3D solutions,

the position of the ingested vortex within the inlet was very similar for both solutions.

Therefore, the use of grid block splitting for each block which contained opposing walls

in the CFL3D grid in order to model each wall with the minimum index to accommodate

the present turbulence model was deemed unnecessary. However, in order to improve the

CFL3D comparisons with PARC3D, the use of block splitting will be needed to model

all viscous flow regions as turbulent. The problems with the use of opposing walls in the

CFL3D turbulence model could be resolved by modifying the turbulence model to accept

opposing walls and eliminate the need for grid block splitting.

Also, the refined definition of the upper divertor region above the inlet cowl appears

to have had a significant influence on the migration of the ingested vortex. The original

grid indicates that the vortex migrates to the compressor face while the revised grid in-

dicates that the vortex dissipates along the inboard wall of the inlet duct. The PARC3D

inlet flow field calculations, using the revised grid, show a significant improvement in the

recovery and distortion over the original grid. This improvement appears to be due to the

improved modelling of the inlet highlight and upper divertor region. However, PARC3D

still overpredicts the inlet flow distortion and underpredicts the inlet total pressure recov-

ery. Further refinements to the highlight grid and the inclusion of vortex generators may

reduce the distortion. The possible unsteadiness in the inlet flow field may require the

use of a time accurate solution. The PARC3D code predicted the inlet flow field better
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than CFL3D when compared to data. The major source of this discrepancy appears to

be the CFL3D pole boundary condition introducing distortions into the flow field. One

approach to correcting this problem would be to include an H-grid block along the inlet

duct centerline and thereby eliminating the pole in the grid. Another contributing factor

may be the lack of an embedded C-grid about the inlet highlight in the CFL3D simulation.

The effects of the inlet lip appear to have a significant effect on the development of the

inlet duct secondary flow field. One approach to further verify this phenomena is to study

the secondary flow development in the inlet duct using uniform inflow conditions. The

difference in this secondary flow field and the one using the distorted inflow would be an

indication of the contribution made by the inlet lip to the secondary flow field development.

The vortices generated along the inlet highlight may be either fictitious or less intense and

may be due to a lack of adequate grid resolution. The use of a more refined grid in this

region would indicate the effects of grid density on the development of these highlight

vortices. In order to compare numerical results with flight data, a fan simulation should

be incorporated as the inlet exit boundary condition.

The PARC3D and CFL3D codes required approximately the same amount of Com-

putational time to obtain a converged solution. The PARC3D inlet mass flow rate was

virtually constant while the CFL3D solution exhibited a +/-1% mass flow rate variation

in the duct. This non-convergence is partially attributed to the pole boundary condition

introducing numerical disturbances into the flow field in regions where the vortical shear

layer approaches the pole region. The CFL3D results may also be indicating the inherent

unsteadiness of the inlet flow field which is indicated by experimental data.

One approach to correcting the multigridding problems would be to use all the fine

grid points along a grid block boundary to define the coarser grid block boundaries. This

would eliminate noncoincident boundaries developing at the coarser grid levels.
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Full ScaleCorrected Flow Rate :

Orig. Grid Rev. Grid
I

I l
146.7 150.0 144.7

Model Scale Recovery : 87.9% 91.2% 91.9%

Model Scale Distortion : 31% 26% 24%

Engine Face Mach Number : .46 .48 .45

Table I. Inlet Performance Summary

CFL3D

142.6

90.1%

30 %

.45

DATA

143.5

94.5%

12%

.45

Grid Points :

Speed (10e- 6 s/it/pt) :

Core Memory(MW)[l] :

Words/Point :

CFL3D PARC3D

911,204 1,214,207

18.2 • 27.3

28.9 6.5

31.7 32.4

1. For PARC3D, this is the memory required for the largest grid block.

Table 2. Code Performance Summary
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Figure 2a. Original Grid

b. Revised Grid

Figure 2. Grid Block Structure
27.



b. Revised Grid

Figure 3. Plane-_af-Symmetry View
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a. Original Grid

b. Revised Grid

Figure 4. Surface Grid (One-half points shown)
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